Drosophila 3′ UTRs Are More Complex than Protein-Coding Sequences

نویسندگان

  • Manjula Algama
  • Christopher Oldmeadow
  • Edward Tasker
  • Kerrie Mengersen
  • Jonathan M. Keith
چکیده

The 3' UTRs of eukaryotic genes participate in a variety of post-transcriptional (and some transcriptional) regulatory interactions. Some of these interactions are well characterised, but an undetermined number remain to be discovered. While some regulatory sequences in 3' UTRs may be conserved over long evolutionary time scales, others may have only ephemeral functional significance as regulatory profiles respond to changing selective pressures. Here we propose a sensitive segmentation methodology for investigating patterns of composition and conservation in 3' UTRs based on comparison of closely related species. We describe encodings of pairwise and three-way alignments integrating information about conservation, GC content and transition/transversion ratios and apply the method to three closely related Drosophila species: D. melanogaster, D. simulans and D. yakuba. Incorporating multiple data types greatly increased the number of segment classes identified compared to similar methods based on conservation or GC content alone. We propose that the number of segments and number of types of segment identified by the method can be used as proxies for functional complexity. Our main finding is that the number of segments and segment classes identified in 3' UTRs is greater than in the same length of protein-coding sequence, suggesting greater functional complexity in 3' UTRs. There is thus a need for sustained and extensive efforts by bioinformaticians to delineate functional elements in this important genomic fraction. C code, data and results are available upon request.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Impact of miRNA Target Sites in Coding Sequences and in 3′UTRs

Animal miRNAs are a large class of small regulatory RNAs that are known to directly and negatively regulate the expression of a large fraction of all protein encoding genes. The identification and characterization of miRNA targets is thus a fundamental problem in biology. miRNAs regulate target genes by binding to 3' untranslated regions (3'UTRs) of target mRNAs, and multiple binding sites for ...

متن کامل

Intron size, abundance, and distribution within untranslated regions of genes.

Most research concerning the evolution of introns has largely considered introns within coding sequences (CDSs), without regard for introns located within untranslated regions (UTRs) of genes. Here, we directly determined intron size, abundance, and distribution in UTRs of genes using full-length cDNA libraries and complete genome sequences for four species, Arabidopsis thaliana, Drosophila mel...

متن کامل

Position of the final intron in full-length transcripts: determined by NMD?

Nonsense-mediated decay (NMD) pathways for detection and degradation of transcripts containing premature termination (stop) codons (PTCs) are ubiquitous among the eukaryotes. NMD uses the presence of a second signal downstream of a termination codon to distinguish a PTC from a true stop codon. In mammals and perhaps other eukaryotes, the second signal is a protein complex closely associated wit...

متن کامل

Evolutionary conservation of UTR intron boundaries in Cryptococcus.

Despite significant progress, the general functional and evolutionary significance of the untranslated regions (UTRs) of eukaryotic transcripts remain mysterious. Particularly mysterious is the common occurrence of spliceosomal introns in transcript UTRs because UTR splicing is not necessary for restoration of transcript coding sequence. In general, it is not known to what extent such splicing ...

متن کامل

The short and the long of UTRs

One of the revelations of the post-genomics era has been that that much more of the genome is transcribed than was previously imagined, and that ncRNAs rival protein coding transcripts in genomic abundance. A pre-mRNA splices out much non-coding – though not necessarily nonregulatory – RNA sequence, yet the mature messenger RNA often still retains a significant non-protein-coding RNA sequence t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014